
Volt: A Lazy Grounding Framework for Solving
Very Large MaxSAT Instances

Ravi Mangal1, Xin Zhang1, Aditya V. Nori2, and Mayur Naik1

1 Georgia Institute of Technology
2 Microsoft Research

Abstract. Very large MaxSAT instances, comprising 1020 clauses and
beyond, commonly arise in a variety of domains. We present VOLT, a
framework for solving such instances, using an iterative, lazy ground-
ing approach. In each iteration, VOLT grounds a subset of clauses in the
MaxSAT problem, and solves it using an off-the-shelf MaxSAT solver.
VOLT provides a common ground to compare and contrast different lazy
grounding approaches for solving large MaxSAT instances. We cast four
diverse approaches from the literature on information retrieval and pro-
gram analysis as instances of VOLT. We have implemented VOLT and
evaluate its performance under different state-of-the-art MaxSAT solvers.

1 Introduction

MaxSAT solvers have made remarkable progress in performance over the last
decade. Annual evaluations to assess the state-of-the-art in MaxSAT solvers
began in 2006. These evaluations primarily focus on efficiently solving difficult
MaxSAT instances. Due to several advances in solving such instances, many
emerging problems in a variety of application domains are being cast as large
MaxSAT instances, comprising 1020 clauses and beyond.1

Large MaxSAT instances pose scalability challenges to existing solvers. Re-
searchers in other communities, notably statistical relational learning and pro-
gram analysis, have proposed various lazy grounding techniques to solve such
instances that arise in their application domains [4, 9, 15–17, 19]. The high-level
idea underlying these techniques is to use an iterative counterexample-guided
approach that, in each iteration, poses a subset of clauses in the original large
MaxSAT instance to an off-the-shelf MaxSAT solver. The construction of this
subset of clauses is guided by means of counterexamples—these are clauses in
the original problem that are unsatisfied by the current solution.

This paper presents a formal framework VOLT for systematically studying
the class of lazy grounding techniques. We show how diverse existing techniques
in the literature are instances of our framework (Table 1 in Section 2). In do-
ing so, VOLT provides the first setting that formally compares and clarifies the
relationship between these various techniques.

1Throughout the paper, we slightly abuse terminology by using MaxSAT to refer
to the weighted partial maximum satisfiability problem, which asks for a solution that
satisfies all hard clauses and maximizes the sum of weights of satisfied soft clauses.

(relation) r ∈ R (argument) a ∈ A = V ∪C
(constant) c ∈ C (fact) t ∈ T = R×A∗

(variable) v ∈ V (ground fact) g ∈ G = R×C∗

(valuation) σ ∈ V→ C (weight) w ∈ R+ = (0,∞]

(hard constraints) H ::= {h1, ..., hn}, h ::=
∧n
i=1 ti ⇒

∨m
i=1 t

′
i

(soft constraints) S ::= {s1, ..., sn}, s ::= (h,w)

(weighted constraints) C ::= (H,S) (input, output) P,Q ⊆ G

Fig. 1: Syntax of weighted EPR constraints.

We have implemented the VOLT framework and its instantiations. It allows
any off-the-shelf MaxSAT solver to be used in each iteration of the lazy grounding
process. We evaluate the performance of VOLT under different state-of-the-art
MaxSAT solvers using a particular instantiation. Our evaluation shows that
existing lazy grounding techniques can produce instances that are beyond the
reach of exact MaxSAT solvers. This in turn leads these techniques to sacrifice
optimality, soundness, or scalability. VOLT is only a starting point and seeks to
motivate further advances in lazy grounding and MaxSAT solving.

2 Volt: A Lazy Grounding Framework

The first step in solving large MaxSAT instances is to succinctly represent them.
VOLT uses a variant of effectively propositional logic (EPR) [11]. Our variant
operates on relations over finite domains and has an optional weight associated
with each clause. Figure 1 shows the syntax of a weighted EPR formula C, which
consists of a set of hard constraints and a set of soft constraints. For convenience
in formulating problems, we augment C with an input P which defines a set of
ground facts or extensional database (EDB). Its solution, output Q, defines a set
of ground facts that are true or the intensional database (IDB).

Weighted EPR formulae are grounded by instantiating the relations over
all constants in their corresponding input domains. We presume a grounding
procedure J·K that grounds each constraint into a set of corresponding clauses.
For example, JhK =

∧
σJhKσ grounds the hard constraint h by enumerating all

possible groundings σ of variables to constants, yielding a different clause for
each unique valuation to the variables in h. The ground clauses represent a
MaxSAT problem which can be solved to produce a solution that satisfies all
hard clauses and maximizes the sum of the weights of satisfied soft clauses.

Enumerating all possible valuations, called full grounding, does not scale to
real-world problems. Our framework VOLT, described in Algorithm 1, uses lazy
grounding to address this problem.1 The framework is parametric in procedures
Init, Ground, and Done. Diverse lazy grounding algorithms in the literature
can be derived by different instantiations of these three procedures.

1We assume that any input P is encoded as part of the hard constraints H. For
brevity, we assume that the hard constraints H are satisfiable, allowing us to elide
showing unsat as a possible alternative to output Q.

approach (φ, ψ) := Init(H,S) (φ, ψ) := Ground(H,S,Q) Done(φ, φ′, ψ,
ψ′, w, i)

SoftCegar
[4]

φ := true
ψ := JSK

φ :=
∧
h∈H

∧
Violate(h,Q)

ψ := true
φ′ = true

Cutting Plane
[16,17]

φ := true
ψ := true

φ :=
∧
h∈H

∧
Violate(h,Q)

ψ ::=
∧

(h,w)∈S
∧
{ (ρ,w) |

ρ ∈ Violate(h,Q) }

φ′ ⊆ φ ∧
ψ′ ⊆ ψ

Alchemy [9]
Tuffy [15]

φ :=
∧
h∈H

∧
Active(h, P)

ψ :=
∧

(h,w)∈S
∧
{ (ρ,w) |

ρ ∈ Active(h, P) }

φ :=
∧
h∈H

∧
Active(h,Q)

ψ :=
∧

(h,w)∈S
∧
{ (ρ,w) |

ρ ∈ Active(h,Q) }

i > maxIters
∨ w > target

AbsRefine
[19]

φ := (
⊕

a∈A a) ∧ ¬q
ψ :=

∧
a∈A(a,w)

φ :=
∧
{
∨n
i=1 ¬JtiKσ ∨ Jt0Kσ |

(
∧n
i=1 ti ⇒ t0) ∈ H ∧

∀i ∈ [0..n] : JtiKσ ∈ G }
ψ := true
whereG = lfp λG′. G′ ∪
{ Jt0Kσ | (

∧n
i=1 ti ⇒ t0) ∈ H ∧

∀i ∈ [1..n] : JtiKσ ∈ (G′ ∪Q) }

φ′ = true

Table 1: Instantiating lazy grounding approaches with VOLT where
Active(h,Q) = { JhKσ | (h =

∧n
i=1 ti ⇒

∨m
i=1 t

′
i) and (∃i : JtiKσ ∈ Q ∨ Jt′iKσ ∈ Q)}

and Violate(h,Q) = { JhKσ | Q 6|= JhKσ}.

Algorithm 1: VOLT

1: input (H,S): Weighted constraints.
2: output Q: Solution (assumes JHK is

satisfiable).
3: (φ, ψ) := Init(H,S)
4: Q := ∅; w := 0; i := 0
5: loop
6: i := i + 1
7: (φ′, ψ′) := Ground(H,S,Q)
8: (φ, ψ) := (φ ∧ φ′, ψ ∧ ψ′)
9: Q′ := MaxSAT(φ, ψ)

10: w′ := Weight(Q′, ψ)
11: if Done(φ, φ′, ψ, ψ′, w, i) return Q
12: Q := Q′; w := w′

In line 3, VOLT invokes the Init
procedure to compute an initial set
of hard clauses φ and soft clauses
ψ. Next, VOLT enters the loop de-
fined in lines 5–13. In each itera-
tion of the loop, the algorithm keeps
track of the previous solution Q, and
the weight w of the solution Q by
calling the Weight procedure that
returns the sum of the weights of
the clauses satisfied by Q. Initially,
the solution is empty with weight
zero (line 4). In line 7, VOLT invokes
the Ground procedure to compute
the set of hard clauses φ′ and soft
clauses ψ′ to be grounded next. Typ-
ically, φ′ and ψ′ correspond to the set of hard and soft clauses violated by the
previous solution Q. In line 8, both sets of grounded clauses φ′ and ψ′ are added
to the corresponding sets of grounded hard clauses φ and grounded soft clauses
ψ respectively. In line 9, this updated set φ of hard clauses and set ψ of soft
clauses are fed to the MaxSAT procedure to produce a new solution Q′ and its
corresponding weight w′. At this point, in line 11, the algorithm checks if the
terminating condition is satisfied by Q′ by invoking the Done procedure.

Instantiations. Table 1 shows various lazy grounding algorithms from the lit-
erature as instantiations of the VOLT framework. SoftCegar [4] grounds all the

brief description # classes # methods bytecode (KB) source (KLOC)

antlr parser/translator generator 350 2,370 186 119
luindex document indexing and search tool 619 3,732 235 170
lusearch text indexing and search tool 640 3,923 250 178
avrora microcontroller simulator/analyzer 1,544 6,247 325 178
xalan XSLT processor to transform XML 903 6,053 354 285

Table 2: Benchmark program characteristics.

soft clauses upfront but lazily grounds the hard clauses. In each iteration, this
approach grounds all the hard clauses violated by the current solution Q. Note
that the Violate procedure takes as input a hard constraint h and a MaxSAT
solution Q, and returns all grounded instances of h that are violated by Q. The
algorithm terminates when no further hard clauses are violated.

Cutting Plane Inference (CPI) [16, 17], on the other hand, is lazier than
SoftCegar and grounds no clauses upfront. In each iteration, both, hard and soft
constraints are checked for violations, and any violated clauses are grounded.
The algorithm terminates when no new constraints are violated.

A common approach, used in statistical relational learning tools like Alchemy
[9] and Tuffy [15], relies on the observation that most ground facts are false in
the final solution, and thereby most clauses are trivially true (since most clauses
are Horn in these applications). An active ground fact is one that has a value of
true. In each iteration, the clauses grounded are such that they contain at least
one active fact as per the current solution. Initially, only the input facts P are
considered active. This approach terminates after a fixed number of iterations
or after the weight of the satisfied clauses is greater than a target weight.

Finally, the AbsRefine approach tackles a central problem in program anal-
ysis of efficiently finding a program abstraction that keeps only information
relevant for proving properties of interest. In particular, this approach uses
the counterexample-guided abstraction refinement (CEGAR) method [5] to effi-
ciently find a suitable abstraction to prove a particular program property when
the program analysis is expressed in Datalog. For such analyses, a set of hard
Horn constraints expresses the analysis rules. A set of input ground facts A
expresses the space of abstractions, with each ground fact in A representing a
unique abstraction of cost w. The query q is a unique ground fact and proving
the query implies having q as false in the final solution Q. The problem is to then
find a solution with the lowest cost abstraction such that the query fact does not
hold and all the analysis rules are satisfied. To lazily solve this problem, AbsRe-
fine initially grounds hard constraints that ensure that the query fact q is false
and only a single abstraction is true in the final solution. Also, soft constraints
specifying the abstraction costs are grounded upfront. Next, in the Ground
procedure, AbsRefine grounds not only the hard clauses violated by the current
solution, but uses the Horn nature of the constraints to ground additional clauses
that would be necessarily grounded in future iterations. Specifically, it calls a
Datalog solver, with the Horn constraints and the current solution Q as input, to
compute the corresponding least fixed point (lfp) solution G. Any clause which
has all of its ground facts in set G is added to the set φ′ of hard clauses to be
grounded. This approach terminates when no further hard clauses are grounded.

total avg solver grounded total
benchmark solver time (min) # iterations time (secs) clauses (×106) clauses

CCLS2akms - 1 - 7.8
Eva500a 124 15 64.8 10.4

antlr MaxHS 117 14 71.2 10.1 8.5x1035

wmifumax 109 14 44.4 10.3
MSCG - 5 22.2 7.9
WPM-2014-co 115 14 40.3 10.3
CCLS2akms - 1 - 4.6
Eva500a 127 14 78.6 14.7

lusearch MaxHS 144 14 123.1 19.1 1x1037

wmifumax 119 15 51.2 10.2
MSCG - 6 17 7.5
WPM-2014-co 196 14 332.7 16
CCLS2akms - 1 - 5.2
Eva500a 172 23 45.2 5.9

luindex MaxHS 161 22 52.5 5.9 4.5x1036

wmifumax 169 23 34.1 6.9
MSCG - 6 17.8 9
WPM-2014-co 216 21 226.3 5.7
CCLS2akms - 1 - 7
Eva500a - 4 80.2 17.6

avrora MaxHS - 13 136.7 15.5 4x1037

wmifumax - 13 115.1 9.1
MSCG - 5 31.6 16.9
WPM-2014-co - 12 2135.9 14.8
CCLS2akms - 1 - 10
Eva500a - 5 96.6 19.2

xalan MaxHS - 18 571.6 > 4290 3.8x1039

wmifumax - 14 78.7 42.9
MSCG - 5 47.6 19.7
WPM-2014-co - 12 505.7 44.3

Table 3: Results of VOLT on program analysis benchmarks. Highlighted rows in-
dicate cases where the MaxSAT solver used finishes successfully in all iterations.

Implementation. We have implemented the VOLT framework in Java. To com-
pute the set of clauses to be grounded when the hard constraints are in the form
of Horn clauses, as in [19], we use bddbddb [18], a Datalog solver. To compute
Violate, the grounded constraints that are violated by a solution, we follow ex-
isting techniques [15,16] and use SQL queries implemented using PostgreSQL.

3 Empirical Evaluation

We evaluate VOLT by instantiating it with the AbsRefine approach for the prob-
lem of finding suitable abstractions for proving safety of downcasts in five Java
benchmark programs. A safe downcast is one that cannot fail because the ob-
ject to which it is applied is guaranteed to be a subtype of the target type. Our
experiments were done using a Linux server with 64GB RAM and 3.0GHz CPUs.

Table 2 shows statistics of the five Java programs (antlr, lusearch, luindex,
avrora, xalan) from the DaCapo suite [3], each comprising 119–285 thousand
lines of code. Note that these are fairly large real-world programs and allow us
to study the limits of VOLT’s scalability with existing MaxSAT solvers.

We use complete weighted partial MaxSAT solvers that were available from
the top performers in Random, Crafted and Industrial categories of the 9th Max-
SAT Evaluation [1]. In particular, the solvers we use are CCLS2akms [10, 12],
Eva500a [14], MaxHS [6], wmifumax [7], MSCG [8,13] and WPM-2014-co [2].

Table 3 summarizes the results of running VOLT with the different MaxSAT
solvers on our benchmarks. The ‘total time’ column shows the total running time
of VOLT. A ’-’ indicates an incomplete run either because the underlying MaxSAT
solver crashed or timed out (ran for >18000 seconds) on a particular instance.
The next column ‘# iterations’ provides the number of iterations needed by
the lazy VOLT algorithm. In cases where VOLT did not terminate, this indicates
the iteration in which the MaxSAT solver failed. The ‘avg solver time’ column
provides the average time spent by the MaxSAT solver in solving an instance.
It does not include the time spent by the solver on a failed run. The ‘ground
clauses’ column provides the distinct number of clauses grounded by VOLT in
the process of solving the weighted constraints. In other words, it indicates the
size of the problem fed to the MaxSAT solver in the final iteration of the VOLT

algorithm. The ‘total clauses’ column reports the theoretical upper bound for
the number of ground clauses if all the constraints were grounded naively.

The evaluation results indicate that the MaxSAT instances generated by
VOLT are many orders of magnitude smaller than the full MaxSAT instance. It
is clear from these numbers that any approach attempting to tackle problems
of this scale needs to employ lazy techniques for solving such instances. On
the other hand, we also observe that many of the solvers are unable to solve
these relatively smaller instances generated by VOLT. For example, VOLT does
not terminate using any of the solvers for avrora and xalan.

The lack of scalability of existing solvers on the larger MaxSAT instances
from our evaluation suggests the need for further research in both, lazy ground-
ing approaches as well as MaxSAT solvers. A possible next step is to make lazy
grounding more demand-driven. This is motivated by the fact many applications
including ours are only concerned with the value of a particular variable instead
of the entire MaxSAT solution. We intend to make the MaxSAT instances gen-
erated in our evaluation publicly available to facilitate future research.

4 Conclusion

Emerging problems in fields like statistical relational learning and program anal-
ysis are being cast as very large MaxSAT instances. Researchers in these areas
have developed approaches that lazily ground weighted EPR formulae to solve
such instances. We have presented a framework VOLT that captures the essence
of lazy grounding techniques in the literature. VOLT not only allows to formally
compare and clarify the relationship between diverse lazy grounding techniques
but also enables to empirically evaluate different MaxSAT solvers. We hope that
VOLT will stimulate further advances in lazy grounding and MaxSAT solving.

Acknowledgements. We thank the anonymous referees for helpful feedback.
This work was supported by DARPA contract #FA8750-15-2-0009 and by NSF
awards #1253867 and #1526270.

References

1. http://www.maxsat.udl.cat/14/index.html
2. http://web.udl.es/usuaris/q4374304/
3. Blackburn, S.M., Garner, R., Hoffman, C., Khan, A.M., McKinley, K.S., Bentzur,

R., Diwan, A., Feinberg, D., Frampton, D., Guyer, S.Z., Hirzel, M., Hosking, A.,
Jump, M., Lee, H., Moss, J.E.B., Phansalkar, A., Stefanović, D., VanDrunen, T.,
von Dincklage, D., Wiedermann, B.: The DaCapo benchmarks: Java benchmarking
development and analysis. In: OOPSLA (2006)

4. Chaganty, A., Lal, A., Nori, A., Rajamani, S.: Combining relational learning with
SMT solvers using CEGAR. In: CAV (2013)

5. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided ab-
straction refinement for symbolic model checking. JACM 50(5) (2003)

6. Davies, J., Bacchus, F.: Postponing optimization to speed up MAXSAT solving.
In: CP (2013)

7. Janota, M.: MiFuMax — a literate MaxSAT solver (2013)
8. Joao Marques-Silva and Alexey Ignatiev and António Morgado: MSCG - Maximum

Satisfiability: a Core-Guided approach (2014)
9. Kok, S., Sumner, M., Richardson, M., Singla, P., Poon, H., Lowd, D., Domingos,

P.: The alchemy system for statistical relational AI. Tech. rep., Department of
Computer Science and Engineering, University of Washington, Seattle, WA (2007),
http://alchemy.cs.washington.edu

10. Kügel, A.: Improved exact solver for the weighted MAX-SAT problem. In: POS-10.
Pragmatics of SAT (2010)

11. Lewis, H.R.: Complexity results for classes of quantificational formulas. J. Comput.
Syst. Sci. 21(3), 317–353 (1980)

12. Luo, C., Cai, S., Wu, W., Jie, Z., Su, K.: CCLS: an efficient local search algorithm
for weighted maximum satisfiability. IEEE Trans. Computers 64(7), 1830–1843
(2015)

13. Morgado, A., Dodaro, C., Marques-Silva, J.: Core-guided maxsat with soft cardi-
nality constraints. In: CP (2014)

14. Narodytska, N., Bacchus, F.: Maximum satisfiability using core-guided MaxSAT
resolution. In: AAAI (2014)

15. Niu, F., Ré, C., Doan, A., Shavlik, J.W.: Tuffy: Scaling up statistical inference in
markov logic networks using an RDBMS. In: VLDB (2011)

16. Noessner, J., Niepert, M., Stuckenschmidt, H.: RockIt: Exploiting parallelism and
symmetry for MAP inference in statistical relational models. In: AAAI (2013)

17. Riedel, S.: Improving the accuracy and efficiency of MAP inference for Markov
Logic. In: UAI (2008)

18. Whaley, J., Lam, M.: Cloning-based context-sensitive pointer alias analysis using
binary decision diagrams. In: PLDI (2004)

19. Zhang, X., Mangal, R., Grigore, R., Naik, M., Yang, H.: On abstraction refinement
for program analyses in Datalog. In: PLDI (2014)

