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Abstract. This paper aims to improve the efficiency of unsat core-
guided MaxSAT solving on a sequence of similar problem instances. In
particular, we consider the case when the sequence is constructed by
adding new hard or soft clauses. Our approach is akin to the well-known
idea of incremental SAT solving. However, we show that there are im-
portant differences between incremental SAT and incremental MaxSAT,
where a straightforward implementation may lead to a sharp decrease
in performance. We present alternatives that enable to cope with such
issues. The presented algorithm is implemented and evaluated on prac-
tical problems. It solves more instances and yields an average speedup
of 1.8x on previously solvable instances.

1 Introduction

MaxSAT is an optimization variant of the Boolean Satisfiability (SAT) problem.
Recent years have witnessed vast improvements in the performance of MaxSAT
solvers [1,4-6,14,15,24-26]. Emerging applications in a variety of domains pose
large MaxSAT instances comprising tens of millions of clauses to such solvers.

A special but common scenario concerns applications which pose a sequence
of similar large MaxSAT instances. For example, many applications involve a
sequence of small updates to a large instance (e.g., verification via abstraction
refinement [13,28] or user interaction [18]). Alternatively, MaxSAT-based solvers
pose such sequences in order to scale to ever larger instances (e.g., using lazy [16]
or demand-driven [29] methods) or more expressive theories (e.g., MaxSMT [7]
and Markov Logic Networks [17,27]). Instead of solving each instance in the
sequence from scratch, it is desirable to improve the efficiency of MaxSAT solvers
by reusing results computed across invocations on such instances.

In this paper, we focus on an especially common case in which the sequence of
MaxSAT instances is constructed by adding hard or soft clauses. Moreover, the
new clauses are determined by the solution to the previous instance. We target an
unsat core-guided algorithm [12] which forms the basis of many popular MaxSAT
solvers. This algorithm solves a single MaxSAT instance by solving a sequence
of SAT instances until the underlying SAT solver finds a satisfying solution.



Each SAT instance is constructed using the unsat cores discovered in previous
SAT instances. Since adding clauses to the current MaxSAT instance does not
invalidate existing unsat cores, a compelling idea to improve the performance of
solving the resulting MaxSAT instance is to reuse the existing unsat cores.

Surprisingly, however, we observe that a naive implementation of this idea
can fail to yield performance benefits or, even worse, sharply curtain them. This
reflects an inherent challenge to making core-guided MaxSAT solving incremen-
tal®: for a MaxSAT instance formed with two disjoint sets of clauses ¢ and 6,
solving ¢ followed by ¢ U4, rather than solving ¢ U § directly, restricts the set
of possible computations. This is because the set of unsat cores of ¢ is always
a subset of those of p U{. Reusing the unsat cores of ¢ in solving ¢ U§ can be
detrimental because the MaxSAT algorithm’s performance crucially depends on
the quality of the unsat cores, and the unsat cores learnt from solving ¢ may be
of poorer quality than those it would learn from solving ¢ U 4§ directly.

To address this challenge, we propose a hybrid solving framework that al-
ternates between the incremental algorithm and its non-incremental version. In
each iteration, our framework checks whether the current instance may poten-
tially benefit from reusing the cores learnt on previous instances. If the check
succeeds, it applies the incremental algorithm by reusing such cores. Otherwise,
it discards the cores learnt thus far and applies the non-incremental algorithm.

We implemented our approach in the Open-WBO MaxSAT solver [22] and
evaluated it on 74 sequences generated from diverse applications in verification
and information retrieval. Together, these sequences contain 669 MaxSAT in-
stances, with an average of 10 million clauses per instance. Our evaluation shows
that our approach outperforms the baseline approaches significantly: it yields an
average speedup of 1.8 per sequence over the non-incremental approach, and
it solves 19 more sequences than the naively-incremental approach.

2 Preliminaries

A propositional formula in Conjunctive Normal Form (CNF) is a conjunction of
clauses where each clause is a disjunction of literals. A literal is either a Boolean
variable z; or its negation —z;. A literal x; (—x;) is valued to true if x; is assigned
to true (false). A literal z; (—x;) is valued to false if x; is assigned to false (true).
A clause is said to be satisfied if at least one of its literals is valued to true.
If all literals in a clause are valued to false, the clause is said to be unsatisfied.
We refer to CNF formulas as sets of clauses and clauses as sets of literals. For a
CNF ¢, the Satisfiability (SAT) problem is defined as finding an assignment to
all variables in ¢ that satisfies all clauses or determining that such an assignment
does not exist.

The Maximum Satisfiability (MazSAT) problem is an optimization version
of SAT. Given a CNF formula ¢, the goal is to find a total assignment that min-

5 Some works (e.g., [20]) define “incremental MaxSAT solving” as solving a MaxSAT
instance by using a SAT solver incrementally. In this paper, it denotes solving a
MaxSAT instance by reusing the results of solving another similar MaxSAT instance.



imizes the number of unsatisfied clauses. In partial MaxSAT, the CNF formula
¢ = ¢s U ¢dy contains a set of soft clauses ¢g and a set of hard clauses ¢ .
The goal is to find an assignment such that all hard clauses are satisfied while
minimizing the number of unsatisfied soft clauses. Finally, a weighted clause is
a pair (¢, w) where w € N is the cost of not satisfying the clause c. In weighted
partial MazSAT, the goal is to find a total assignment where all hard clauses
are satisfied, while minimizing the sum of the weights of unsatisfied soft clauses.
In the remainder of the paper, we use MaxSAT to refer to the more general
problem of weighted partial MaxSAT.

Most of the state-of-the-art MaxSAT algorithms rely on successive calls to a
SAT solver. In particular, Core-Guided MaxSAT algorithms have been shown to
be very effective in solving instances that arise from real-world applications [23].
These algorithms take advantage of the ability of SAT solvers to identify unsat-
isfiable subformulas (also known as unsatisfiable cores).

A SAT solver call SAT(¢, A) receives a CNF formula ¢ and a set of assump-
tions A. The set A defines a set of literals that must be true in the model of ¢
returned by the SAT call. A SAT call returns a triple (st, v, ¢¢) where st denotes
the solver status (SAT or UNSAT). If the call is satisfiable, then v contains a
model of ¢. Otherwise, ¢ C ¢ contains a core: an unsatisfiable subformula of ¢.
Note that a SAT call can return UNSAT, even when ¢ is satisfiable. This occurs
when there is no model of ¢ such that all assumption literals in A can be set to
true. In this case, ¢ contains clauses from ¢ as well as literals from A.

3 Sequential Maximum Satisfiability

We define the sequential MazSAT problem as the problem of solving a sequence
of n MaxSAT formulas ¢, ¢?,..., ", with ¢¥ C ¢**+1. This problem arises in
many applications [7,16,18,28], where a sequence of MaxSAT instances are to be
solved. In most cases, the k-th MaxSAT instance ¢ is generated by incrementally
modifying the previous instance ¢*~!, based on the solution of ¢¥~1.

A straightforward solution to the sequential MaxSAT problem is to use any
off-the-shelf MaxSAT solver to independently solve each MaxSAT instance ¢F
(1 < k < n). This is the approach currently used in most applications [7,16, 18,
28]. However, this does not enable reusing information obtained from solving a
given formula in solving the subsequent formulas.

This section is organized as follows. Section 3.1 reviews the Fu & Malik al-
gorithm for MaxSAT with incremental SAT—previously published in [20]. Sec-
tions 3.2, 3.3 form the core contribution of the paper: Section 3.2 shows how
to generalize Fu & Malik to solve sequential MaxSAT and Section 3.3 introduces
restarts to cope with performance issues in the introduced algorithm.

3.1 Background: Fu & Malik MaxSAT Algorithm

The Fu & Malik algorithm [12] was initially proposed in 2006 and later extended
to weighted MaxSAT [3,19]. More recently, a new version was proposed where the



Algorithm 1: Fu-Malik Algorithm with Incremental SAT [20]

Input: ¢ = ¢u U ¢s
QOutput: optimal solution to ¢

1 ¢w + ¢u U{cU{blockingVar(c)} | c € ¢s} // fresh blocking variables
2 A < {—blockingVar(c) | ¢ € ¢s} // enable all soft clauses
3 while true do

4 (st,v, pc) < SAT(dw,.A)

5 if st = SAT then return v // optimal solution to ¢
6 Ve« 0

7 mec = min{weight(c) | ¢ € ¢pc A soft(c)}

8 foreach c € ¢c A soft(c) do

9 Ve <+ VrU{r} // r is a fresh relaxation variable
10 ¢r + (c\ {blockingVar(c)}) U{r}U{b,} // b. is a fresh variable
11 A+~ AU {-b,} // enable c,
12 ow < dw U{cr}
13 weight(c,) + mc
14 if weight(c) > mc then weight(c) < weight(c) — mc
15 else A+ (A\ {—blockingVar(c)}) U {blockingVar(c)} // disable c
16 dw < dw U{CNF(3_, oy, 7 < 1)}

SAT solver is not rebuilt in each iteration, thus allowing the reuse of knowledge
learnt by the SAT solver in previous iterations. Hence, the SAT solver is used
incrementally for a single MaxSAT instance. Later we will extend this to use the
whole MaxSAT solver incrementally, i.e. for multiple MaxSAT instances.

Algorithm 1 reviews the pseudo-code of Fu & Malik for solving weighted par-
tial MaxSAT using SAT incrementally [20]. The working formula ¢y is initialized
to all hard clauses with all soft clauses extended with a fresh blocking variable.
Negations of the blocking variables are added to the assumptions A, thus en-
abling the original soft clauses (lines 1-2). When a soft clause ¢ is extended with a
blocking variable b to form (¢Vb), then adding —b to the assumptions effectively
enables ¢ since the SAT solver must necessarily satisfy c. Conversely, adding b
to the assumptions disables ¢ since (¢ V b) is trivially satisfied.

Each iteration issues a SAT call on line 4. If the working formula is satisfiable,
the optimal solution was found. Otherwise, ¢¢ is an unsatisfiable subformula
(core). In this case, for each soft clause ¢ in ¢¢, a new relaxed clause ¢, is created
from ¢ with two additional variables (a relaxation and a blocking variable). If
the clause is enabled through the blocking variable, then the relaxation variable
represents if the original clause is satisfied (or not) in the MaxSAT solution.

On line 7, the weight of the core m¢ is the minimum weight of all soft clauses
in ¢¢. Soft clauses ¢ € ¢ with weight equal to m¢ are disabled (line 15) and
replaced with their relaxation c,. Soft clauses ¢ € ¢¢ with weight larger than
mc¢ are not removed. Their weight is decreased by m¢, thus resulting in a clause
split, since the original weight is divided between ¢ and its relaxation c..

Finally, note that since the working formula is always expanded, the SAT
solver is never rebuilt and its internal state is kept (including the learnt clauses).



3.2 Our Approach: Solving Sequential MaxSAT Incrementally

In this section we propose how to solve a sequential MaxSAT problem incremen-
tally. Consider a sequence of MaxSAT formulas ¢!, ¢?, ..., ¢", with ¢F C pFt1.

We apply Algorithm 1 to ¢' and then extend the resulting working formula
¢w with hard clauses from ¢%; \ ¢}, and, soft clauses from ¢% \ ¢} each extended
with a fresh blocking variable. Then resume the main loop of Algorithm 1 (from
line 3). This process is analogously repeated for the upcoming formulas in the
sequence. More precisely, each time ¢y becomes satisfiable, the clauses ¢}I€{+1
ok, and d)?‘l \gf)’g are added to ¢y, where the soft clauses are adorned with a
fresh blocking variable, which is in turn reflected in the assumptions. Then go
to line 3.

As such, it is not necessary to restart the search from scratch for each formula
in the sequence. This approach is correct because the addition of new soft or
hard clauses does not invalidate any of the previously found cores. Note that the
approach is incremental at two levels: it uses the SAT solver incrementally for
each instance but also is incremental across the sequence of instances.

3.3 Extending Sequential MaxSAT Solving with Restarts

Consider a sequence of MaxSAT instances ¢',...,¢" where ¢' C ¢7 for 1 <
i < j < n. When solving ¢’ first, the incremental Fu & Malik has a “narrower
perspective” than the non-incremental Fu & Malik applied directly on ¢/. More
specifically, the set of possible cores in ¢’ is always a subset of the possible
cores in ¢’/. Consequently, the incremental version may end up finding a core of
poorer quality than the non-incremental version. Finding a core of poor quality
is often detrimental to the rest of the computation. This is especially true for
the weighted Fu & Malik, which splits clauses based on the minimum weight of
the found core. This is illustrated by Example 1.

Ezample 1. Consider an n € N, weights w; < wq € N, and the core Clwy, ws] =
{(wa,—a;) | i € L.n} U{(w1,b V V;cq @), (w2,—b)}. Once found, this core is
conceptually split into the sets of clauses Clwy,w;] and C[0,wy — w;], where
the first set is relaxed. This creates n + 1 new clauses and relaxation variables,
incurring thus cost on further computation. If the next iteration adds the hard
clause (b), then the MaxSAT solver can use the simpler core {(b), (wz, —b)} with-
out encountering the large core above.

Here we propose a solution to the above-outlined issue, which is to restart
the whole computation once we suspect that the incremental version is finding
cores of poor quality. We say that a given soft clause ¢ € ¢¢ is split if its weight
is larger than the weight of the unsatisfiable core (m¢). If a clause c¢ is split,
it means that an unsatisfiable core with other soft clauses with smaller weights
was found. In our solver, we maintain a split counter for every soft clause in the
formula and define a split limit. When the split limit is reached for some soft
clause, the solver is rebuilt and Algorithm 1 is restarted. In order to maintain
completeness, the solver restarts at most once for each MaxSAT formula ¢’ in
the sequential MaxSAT instance.



4 Empirical Evaluation

We evaluate our technique on sequential MaxSAT problems generated from three
applications: abstraction refinement, user-guided analysis, and statistical rela-
tional inference. Abstraction refinement [28] tackles a central problem in software
verification: finding a program abstraction that only tracks information relevant
to proving assertions of interest. It solves a sequence of MaxSAT instances to
construct such an abstraction. User-guided analysis [18] iteratively incorporates
user feedback in software analysis tools to eliminate false alarms. In each iter-
ation, it solves a MaxSAT instance to infer the most likely set of true alarms
based on the current feedback. Statistical relational inference [16] enables a wide
range of information retrieval tasks by solving a system of weighted first-order
constraints over a relational database. It scales to large database instances by
lazily solving a sequence of progressively growing MaxSAT instances.

We implemented our technique in the Open-WBO [22] MaxSAT solver. All
experiments were done on a Linux machine with a 3.0 GHz processor. We limited
each MaxSAT solver invocation to 32 GB RAM and 30 minutes of CPU time.

We compare our incremental algorithm with restarts to two baselines: the
non-incremental and the incremental-without-restarts algorithms. The former is
the original Open-WBO solver while the latter is obtained by disabling restarts
in our solver. To evaluate the effect of different split limits, we use the split limits
2, 5, 10, and 15. We generated the sequential MaxSAT instances by running the
applications with both our solver (using split limit of 5) and the non-incremental
solver until the application terminates or any MaxSAT invocation exceeds one
hour. Since the solutions returned by the MaxSAT solver may affect the sequence
of MaxSAT instances generated by the applications, we used both the solvers
to reduce the bias introduced by a particular solver in the instance generation.
Following this recipe, we obtained 74 sequential MaxSAT problems comprising
669 MaxSAT instances. The number of clauses in each MaxSAT instance ranges
from two thousand to 150 million, with 10 million being the average.

The cactus plot in Figure 1(a) shows the number of sequential MaxSAT
instances solved by our approaches and the baseline approaches within given
CPU times. As the plot shows, our incremental algorithm with 5 as the split
limit solves the most instances.

Moreover, on the instances that can be solved by both approaches, our ap-
proach with 5 as the split limit yields an average speedup of 1.8x over the
non-incremental approach. On certain instances, the benefit is as high as 4.7x.
The scatter plot in Figure 1(b) further compares the time consumed by both ap-
proaches on each individual MaxSAT instance. As the plot shows, the speedup
can be as high as 296x on certain instances. This shows that our approach effec-
tively improves the overall performance by reusing computation across similar
MaxSAT instances in the same sequence.

We also observe that the incremental algorithm without restarts performs
significantly worse compared to other approaches. This justifies the need for
restarts in incremental MaxSAT solving: naively reusing cores computed from
previous smaller instances can severely impede the solver’s performance on the
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Fig. 1. Performance of our approaches and baseline approaches on (a) sequential
MaxSAT problems and (b) each individual MaxSAT instance in the sequences.

current instance. On the other hand, our approach effectively avoids this problem
by restarting the solving process when it observes any clause being split too often.

We further observe that using a split limit that is too high (e.g., 10 or 15) or
too low (e.g., 2) adversely affects the performance of the incremental algorithm.
When the cores learnt from previous smaller MaxSAT instances are unsuitable
for the current MaxSAT instance, a too high split limit can either fail to trigger
the restart or only triggers the restart after the algorithm has spent significant
time running with these cores. On the other hand, using a too low limit can trig-
ger the restart too often, making the algorithm fall back to its non-incremental
version. While finding an adequate restart condition is an interesting research
direction, using 5 as the split limit yields the best overall performance on the
evaluated instances.

5 Discussion and Future Work

Incrementality and restarts are well established in SAT solving [10, 11], so a
natural question is why they do not directly translate to MaxSAT. Adding new
clauses to a SAT solver does not invalidate existing learnt clauses just as new
clauses do not invalidate existing cores in a MaxSAT solver. Yet, core reuse leads
to a decline in performance in MaxSAT (see Sec. 4). This reveals the inherent
issue of computing cores of poor quality when solving the smaller instance (see
Example 1). In SAT, poor quality clauses from previous computations are even-
tually deleted. In MaxSAT, poor quality cores can be detrimental to the rest of
the computation. This is especially true for the weighted Fu & Malik algorithm,
which creates new clauses by splitting [19]. Bad quality cores are also known to
arise in the standard formulation of weighted MaxSAT. There are approaches to
resolve the issue, namely stratification [2] and formula partitioning [21], which



iteratively consider subformulas of the original formula. Note that the same ideas
cannot be easily adapted to our setting since the complete MaxSAT formula in
our case is not available to the algorithm in advance. Also note that although
stratification can be applied to separate MaxSAT instances in the sequence,
many of them are satisfiable, which results in stratification being inefficient in
practice, as also confirmed by our experience.

The proposed approach uses two levels of incrementality at the same time:
(1) it uses incremental SAT calls inside a MaxSAT solver and (2) it makes
MaxSAT calls also incremental. This means that all the information learnt during
the sequential problem solving is kept until the problem is solved completely.
Although the standard way to solve a sequence of MaxSAT instances is to restart
a MaxSAT solver at each iteration while doing incremental SAT calls inside,
alternatively one could consider using incrementality only for the MaxSAT calls
instead. For this, one needs to keep all unsatisfiable cores computed at each
preceding MaxSAT call, relax the corresponding clauses of the formula, and
reconstruct the cardinality constraints.

Observe that the proposed ideas cannot be easily applied to algorithms that
are not core-guided. In the classical SAT-UNSAT, UNSAT-SAT linear and bi-
nary search MaxSAT algorithms, the SAT solver might learn constraints that are
invalid for solving the next MaxSAT formula, so it would have to be restarted
for each MaxSAT formula in the sequence. Also note that the Fu é Malik al-
gorithm has the drawback of relaxing clauses more than once and thus in-
troducing many auxiliary variables. Therefore, it is of great interest to adapt
the proposed ideas to more recent MaxSAT algorithms that resolve this issue
(e.g. [1,4-6,8,9,14,15,24-26]). An immediate improvement of the proposed ap-
proach would be to devise more fine-grained restart strategies, that is, selectively
keeping certain good cores, instead of completely restarting from scratch. Finally,
it is also interesting to explore incrementality when clauses are not only added
but also deleted.

6 Conclusion

This paper explores an incremental approach to core-guided MaxSAT solving.
We begin by extending a core-guided MaxSAT algorithm for sequences of in-
stances where clauses are gradually added. Experimental evaluation shows that
this approach in fact yields worse performance than applying the MaxSAT solver
on each instance from scratch. This is due to the inherent problem of learning
“bad” information from instances earlier in the sequence. We propose restarts
which enable discarding learnt information if deemed unuseful. Our restart strat-
egy significantly outperforms the non-incremental version.
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